Design of an improved spam filter based on naive bayesian classifier 垃圾郵件過濾器的改進(jìn)
Face detection with bayesian classifier 基于貝葉斯判別器的面部檢測
3 ) we construct the privacy preserving naive bayesian classifier 3 )構(gòu)造了保持隱私的樸素貝葉斯分類器。
The key of model learning of semi - naive bayesian classifier is how to combine feature attributes effectively 目前半樸素貝葉斯分類模型學(xué)習(xí)的關(guān)鍵是如何有效組合特征屬性。
This thesis makes a study of two bayesian classifying models which are semi - naive bayesian classifier and increasing bayesian classifier 本文從兩個(gè)方面對貝葉斯分類模型進(jìn)行了深入的研究:半樸素貝葉斯分類與增量貝葉斯分類。
The oblivious polynomial evaluation protocol will be used many times in our privacy preserving naive bayesian classifier , so its efficiency is important to the solution 健忘多項(xiàng)式計(jì)算協(xié)議在保持隱私的樸素貝葉斯分類器協(xié)議中多次用到,因此協(xié)議的效率是一個(gè)需要關(guān)心的問題。
The key of increasing bayesian classifier is the policy of how to choose test samples . this thesis studies how to make full use of prior knowledge and transmit it 增量貝葉斯分類模型的關(guān)鍵是測試實(shí)例的選擇策略,本文研究的重點(diǎn)是如何充分利用訓(xùn)練集的先驗(yàn)知識并使其在學(xué)習(xí)過程中向前傳遞,提出了新的模型。
Theoretical analyses and experimental results demonstrate that this method is very effective . also , bayesian classifier , subspace method and ann are summarized in this chapter . they can be used for the next research 本章還對貝葉斯分類器,子空間模式識別和人工神經(jīng)網(wǎng)絡(luò)在字符識別中的應(yīng)用進(jìn)行了總結(jié),可作為進(jìn)一步研究的基礎(chǔ)。
By constructing two secure posterior probability evaluation protocols to deal with discrete and numeric , or categorical and continuous attributes respectively , we attain the naive bayesian classifier without preamble 本文針對離散值屬性情形和連續(xù)值屬性情形分別構(gòu)造了保持隱私的后驗(yàn)概率計(jì)算協(xié)議,最后獲得安全的樸素貝葉斯分類器協(xié)議。
Since most algorithms are not effective and not very meaningful in combining , this thesis proposes an algorithm based on a kind of semi - naive bayesian classifier which is measured by conditional mutual information ( cmi - bsnbc ) 針對已有的學(xué)習(xí)算法中存在的效率不高及部分組合意義不大的問題,本文提出了條件互信息度量半樸素貝葉斯分類學(xué)習(xí)算法( cmi - bsnbc ) 。